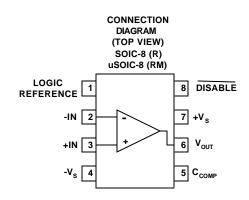


Low-Noise High-Speed Amplifier For 16 Bit Systems

Preliminary Data Sheet

AD8021

FEATURES Extremely Low Noise 2.1nV/ÖHz typ and 1.5 pA/ÖHz typical Adjustable Gain Bandwidth, Up to 2GHz **High Speed** BW = 220 MHz, SR = 130 V/ms (G = +2)BW = 180 MHz, SR = 500 V/ms (G = +11) **Low Power** 30mW - 6mA typ for ±2.5V supply **Output Disable Feature** Low Distortion -96dB 2nd, 3rd harmonics @ 1MHz Low and Temperature Stable DC Offset 5V to 24V Supply Range **Low Price** Small Packaging Available in SOIC-8 and m6OIC-8


APPLICATIONS
Ultra-sound Signal Processing
Instrumentation Pre-amp
Active Filters
Portable Instrumentation
Line Receivers
Precision Instruments
A-to-D Pre-amp and Driver
High Gain Circuits

PRODUCT DESCRIPTION

The AD8021 is a very high performance high-speed voltage feedback amplifier, which can be used in 16 bit high-resolution systems. The AD8021 is designed to have the lowest noise $(2.1 \text{nV}/\sqrt{\text{Hz}})$ typ and 1.5 pA/ $\sqrt{\text{Hz}}$ typ) at the lowest quiescent supply current (7mA@±5V max) available on the market today. The AD8021 operates over a wide range of supply voltages from ±2.5V to ±12V, as well as from single +5V supplies, making it ideal for high-speed, low power, instruments. An output disable pin is provided which further reduces supply current to 1.3 mA.

The AD8021 is an easy to use voltage feedback architecture with the flexibility of allowing the user to choose the gain bandwidth product that best suites the application. With a single compensation capacitor the user can select the gain and bandwidth desired up to gain bandwidth products of 2.0 GHz.

The AD8021 is a very well behaved amplifier that settles to 1% in 30ns for a 2V step. The AD8021 has fast overload recovery of 50ns.

The AD8021 is stable over temperature with low input offset voltage and input bias current drift, $0.8\mu V/^{\circ}C$ and $2nA/^{\circ}C$ respectively. The AD8021 is also capable of driving a 75Ω line with $\pm 3V$ amplitude video signals.

Not only is the AD8021 technically superior, but it is also priced much less than comparable amps drawing much more quiescent current. The AD8021 is a high-speed general-purpose amplifier, ideal for a wide variety of gain greater than two configurations, and can be used throughout a signal processing chain and in control loops.

The AD8021 is available in both standard 8-pin SOIC and μ SOIC packages in the industrial temperature range of -40°C to +85°C.

Model	Operating Temp	Package
	Range	
AD8021AR	-40 to +85°C	8 Lead SOIC
AD8021ARM	$-40 \text{ to } +85^{\circ}\text{C}$	8 Lead µSOIC

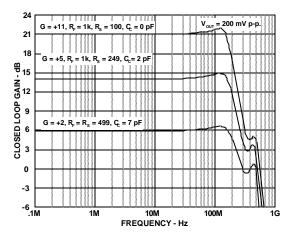


Fig. 1 Small Signal Frequency Response.

PRELIMINARY TECHNICAL DATA

AD8021 - SPECIFICATIONS (@TA = +25°C, VS = ±5V, RL = 1kW, Gain =+2, CC = 7 pF, unless otherwise noted)

		AD8	AD8021AR/ARM		
Parameter	Conditions	Min	Тур	Max	Units
DYNAMIC PERFORMANCE					
-3dB Bandwidth Small Signal					
	$G = +2, C_C = 7 pF, V_O = 0.5Vp-p$	TBD	220		MHz
	$G = +5$, $C_C = 2$ pF, $V_O = 0.2$ Vp-p	TBD	220		MHz
	$G = +11, C_C = 0 \text{ pF}, V_O = 0.2Vp -p$ $G = +11, C_C = 0 \text{ pF}, V_O = 0.2Vp -p$	TBD	180		MHz
Class Data AV atas	$G = +11, C_C = 0 \text{ pr}, v_0 = 0.2 \text{ v p - p}$	100	160		WIIIZ
Slew Rate, 4V step	C 12 C 7 - E	TBD	±200		37/
	$G = +2, C_C = 7 \text{ pF}.$ $G = +5, C_C = 2 \text{ pF}.$	TBD	±350		V/μs V/μs
	$G = +3$, $C_C = 2$ pF. $G = +11$, $C_C = 0$ pF.	TBD	±500		V/μs V/μs
Settling Time to 0.01%	$G = +11$, $C_C = 0$ pr. $V_O = 2V$ Step,	100	21		ns
_					
Overload Recovery (50%)	0V to ±4V step at input, G=+11		50		ns
HARMONIC/NOISE PERFORMANCE					
f = 1 MHz	V = 2Vn m		06		dD o
HD2	$V_0 = 2V_p - p$.		-96		dBc
HD3	$V_{O} = 2Vp - p$.		-102		dBc
f = 5 MHz					1.5
HD2	$V_{O} = 2V_{P} - p$.		-72		dBc
HD3	$V_{O} = 2Vp-p$.		-76		dBc
Input Voltage Noise	f = 100 kHz		2.1	2.5	$n V / \sqrt{Hz}$
Input Current Noise	f = 100 kHz		1.5		pA/√Hz
DC PERFORMANCE					
Input Offset Voltage			0.25	1	mV
Input Offset Voltage Drift	T_{\min} - T_{\max}		0.8		μV/°C
Input Bias Current	+Input or -Input		7		μA
Input Bias Current Drift			2		nA/°C
Input Offset Current			0.1		±μΑ
Open Loop gain			80		dB
INPUT CHARACTERISTICS					
Input Resistance			10		МΩ
Input Capacitance			2		pF
Input Common-Mode Voltage Range		$-V_S+1.8$		$+V_{S}5$	V
Common-Mode Rejection Ratio	$V_{CM} = \pm 2.5 V$		-90		dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing	$R_L = 1k \Omega$	±3.25	±3.5		V
Linear Output Current		40	50		mA
Short Circuit Current			100		mA
Capacitive Load Drive for 30%	VO = 0.2 V p - p.		40		pF
overshoot					
DISABLE CHARACTERISTICS					
Off Isolation	f = 10 MHz.		TBD		dB
Turn-On Time			40		ns
Turn-Off Time			100		ns
Switching Threshold		TBD	LR	TBD	V
			$+1.5^{1}$		

Notes:

1. LR = Logic Reference Level

PRELIMINARY TECHNICAL DATA

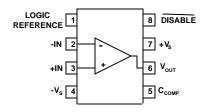
AD8021

		AD8021AR/ARM			
Parameter	Conditions	Min	Тур	Max	Units
POWER SUPPLY					
Operating Range		±2.5	±5	±12.0	V
Quiescent Current	±2.5V		6		mA
	±5 V		7		
	±12 V		8		
	Powered Down		1.3	TBD	mA
Power Supply Rejection Ratio	$\pm 4V$ to $\pm 6V$		-90		dB

Notes:

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS 1


Supply Voltage TBD V
Power Dissipation
Input VoltageTBD V
Differential Input Voltage \dots TBD V
Output Short Circuit Duration
Storage Temperature
Operating Temperature Range
Lead Temperature Range

Notes

1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN FUNCTION DESCRIPTIONS				
Pin No.	Name	Function		
1	Disable	Reference for logic low voltage level.		
	Reference	If used, connect to logic negative		
		supply.		
2	-IN	Inverting input.		
3	+IN	Non-inverting input.		
4	-V _S	Negative Supply Voltage.		
5	C_{COMP}	Compensation Capacitor (see apps.		
		section for value.)		
6	V _{OUT}	Output		
7	$+V_S$	Positive Supply Voltage		
8	DISABLE	Disable, active low. Connects to logic		
		disable source. If disable function is		
		not required the pin may be left		
		unconnected for normal operation.		

PIN CONFIGURATION

Model	Temperature Range	Package Description	Package Outline	Branding Information
AD8021AR AD8021AR-REEL AD8021AR-REEL7	-40°C to +85°C	8-Lead SOIC	SO-8	
AD8021ARM AD8021ARM-REEL AD8021ARM-REEL7	-40°C to +85°C	8-Lead μSOIC	RM-8	HNA HNA HNA